Intersectionality in Personnel Selection: Gaining a Full Picture of the Applicant Pool

Steve Khazon, Ph.D. Josie Herman, M.A. Hunter Costigan, Ph.D., ABD

Welcome!

Agenda

- About Us
- What is Intersectionality?
- Brief History of Racial and Gender Subgroup Differences in Testing
- Current Literature on Intersectionality
- Why Evaluate for Intersectionality?
- Analysis Methodology
- Research Findings
- Discussion and Questions

About Us

- For over 40 years Ergometrics has been developing employment exams
 - Video based, human relations exams
 - Entry level and promotional
 - Fire, police, corrections, emergency communications, transit
- NTN was founded in 2006 for recruitment and exam administration
 - Job Posting
 - Exam Scheduling
 - Data Collection
 - Candidate Support
 - Reporting

Literature Search and Review

Definition

 Intersectionality: The recognition of an individual's status within multiple social categories (e.g., race, gender, religion, sexual orientation, socioeconomic status) as uniquely important to their personal experience within society (Cole, 2009).

Brief History

• <u>Race Differences:</u>

- Human Relations (SJTs):
 - There tend to be moderate racial subgroup differences on SJTs favoring white candidates.
 Video testing has been found to reduce some subgroup differences (Ployhart & Holtz, 2008; Ryan & Tippins, 2004)
- Math, Reading, and Mechanical Reasoning:
 - Research on racial differences in cognitive ability have found that black-white subgroup differences tend to be larger g-loading assessment (Outtz & Newman, 2009)
 - Hispanic and black children tend to display lower levels of reading ability in comparison to white children (Merolla & Jackson, 2017)
 - These discrepancies have been regularly theorized to be due to a variety of factors including disparity in social economic status and unequal access to education (Outtz & Newman, 2009; Merolla & Jackson, 2017)

Brief History

- <u>Gender Differences:</u>
 - Human Relations (SJTs):
 - Women tend to perform better on both written and video SJTs, with a larger advantage on video (Ployhart & Holtz, 2008; Ryan & Tippins, 2004)
 - Math, Reading, and Mechanical Reasoning:
 - Differences in performance have been observed on subsets of cognitive ability (Feinberg, 1988; Lindenberg et al, 2010; Voyer & Voyer, 2014)
 - Overall, women tend to have higher academic performance across all course topics (Voyer & Voyer, 2014)

Current Literature

- Intersectionality:
 - Women in STEM: The literature on women in STEM programs has pointed to potentially unique challenges faced by women of color that are not faced by their white peers (Blackburn, 2017; Bloodhart, 2020)
 - Example: Recent Developments in Personnel Selection (Derous & Pepermans, 2019)

Why assess Intersectionality?

- The simple effects of gender and race across test scores may draw different conclusions than the interaction effects
- Evaluating interaction effects can paint a more fine-grained picture of "double-jeopardy" scenarios related to both gender and racial subgroup differences

Research Question

 How does the relationship between education level and performance on the four components of the FireTEAM Entry-Level Exam vary across race, gender, and the interaction between race and gender (i.e., intersectionality)?

Methodological Approach

Participants

- NTN's entry-level fire candidates
- Tested 2018 2022
- Candidates are from across the US
- Total N = 41,978

Overall Sample N by Category

	Ν	%						
Sex								
Male	35873	85.46%						
Female	3605	8.59%						
	Ethnicity							
Native American	502	1.20%						
Asian	1021	2.43%						
African American	3808	9.07%						
Caucasian	25019	59.60%						
Hispanic	6912	16.47%						
Other	2014	4.80%						
White	46261	0.63%						
	Education							
High School/GED	6995	16.66%						
Some College	17409	41.47%						
2 Year College Degree	6651	15.84%						
Bachelor's Degree	7835	18.66%						
Advanced Degree	743	1.77%						
Total	41978	100.00%						

Measures

- Entry-Level Fire Exam Performance (Swander et al., 2021):
 - Human Relations (SJT)
 - Mathematics
 - Mechanical Reasoning
 - Reading
- Demographics
 - Education
 - Ethnicity
 - Gender

Research Findings

Main Effects and Interactions

	0				
	Sum of	-16	Mean	-	
Source	Squares	df	Square	F	p-value
Intercept	860.61	1	860.61	7579.65	0.00
Gender	2.22	1	2.22	19.56	0.00
Ethnicity	11.26	5	2.25	19.83	0.00
Education	4.38	4	1.10	9.65	0.00
Gender *	3.30	5	0.66	5.81	0.00
Ethnicity					
Gender *	1.57	4	0.39	3.46	0.01
Education					
Ethnicity *	7.85	20	0.39	3.45	0.00
Education					
Gender *	3.71	19	0.20	1.72	0.03
Ethnicity *					
Education					
Error	4434.26	39054	0.11		
Total	33916.00	39113			

Post-Hoc Analysis

			-		_	
	Ethnicity	Education		Male Std. Error		emale Std Erro
	Ethnicity	High School/GED	0.93	0.03	0.8	0.14
		Some College	0.93	0.03	0.85	0.14
Asian	2 Year College Degree	0.91	0.02	1	0.1	
		Bachelor's Degree	0.92	0.02	0.95	0.05
		Advanced Degree	0.93	0.06	1	0.18
		High School/GED	0.76	0.01	0.61	0.03
	African Americar	Some College	0.85	0.01	0.8	0.02
A		2 Year College Degree	0.85	0.02	0.91	0.04
		Bachelor's Degree	0.88	0.01	0.78	0.04
		Advanced Degree	0.85	0.04	0.5	0.09
		High School/GED	0.9	0	0.85	0.02
		Some College	0.91	0	0.88	0.01
	Caucasian	2 Year College Degree	0.9	0	0.89	0.02
		Bachelor's Degree	0.9	0	0.88	0.01
-		Advanced Degree	0.87	0.02	0.85	0.03
		High School/GED	0.85	0.01	0.83	0.04
		Some College	0.89	0.01	0.88	0.02
	Hispanic	2 Year College Degree	0.9	0.01	0.83	0.03
		Bachelor's Degree	0.89	0.01	0.81	0.03
		Advanced Degree	0.88	0.04	0.78	0.07

Takeaways

Summary of Findings

- Significant interactions for sociodemographic variables with pass
- Largest effects for African American women

Potential Limitations

- Sample size for minority groups
- More direct comparison to other predictors of test performance

Key Takeaways

- More researchers should consider assessing intersectionality when evaluating subgroup differences
- Focus on making testing processes more accessible to people in vulnerable groups

References

Blackburn, H. (2017). The status of women in STEM in higher education: A review of the literature 2007-2017. Science & Technologies Libraries, 36(3), 235-273.

Bloodhart, B., Balgopal, M. M., Casper, A. M., Sample McMeeking, L. B., & Fischer, E. V. (2020). Outperforming yet undervalued: Undergraduate women in STEM. PLoS One, 15(6), 1-13

Cole, E. R. (2009). Intersectionality and research in psychology. *American Psychologist*, 64(3), 170-180.

Derous, E., & Pepermans, R. (2019). Gender discrimination in hiring: Intersectional effects with ethnicity and cognitive job demands. Archives of Scientific Psychology, 7(1), 40-49.

Feinberg, A (1988). Cognitive gender differences are disappearing. American Psychologist, 43(2), 95-103.

Goldstein, H. W., Scherbaum, C. A., & Yusko, K. P. (2009). A theory of adverse impact. In J. L. Outtz (Ed.), Adverse impact: Implications for organizational staffing and high stakes selection (pp. 95-134). Routledge.

Halpern, D. F., & LaMay, M. L. (2000). The smarter sex: A critical review of sex difference in intelligence. Educational Psychology Review, 12(2), 229-246.

Lindenberg, S. M., Hyde, J. S., & Petersen, J. L. (2010). New trends in gender and mathematics performance: A meta-analysis. *Psychological Bulletin*, 136(6), 1123-1135.

Merolla, D. M., & Jackson, O. (2019). Structural racism as a fundamental cause of the academic achievement gap. Social Compass, 13(6), 1-13.

Outtz, J. L., & Newman, D. A. (2009). A theory of adverse impact. In J. L. Outtz (Ed.), Adverse impact: Implications for organizational staffing and high stakes selection (pp. 53-94). Routledge.

Ployhart, R. E., & Holtz, B. C. (2008). The diversity-validity dilemma: Strategies for reducing racioethnic and sex subgroup differences and adverse impact in selection. *Personnel Psychology*, *61*(1), 153-172.

Ryan, A. M., & Tippins, N. T. (2004). Attracting and selecting: What psychological research tells us. Human Resource Management, 43(4), 305-318.

Sackett, P. R., Zhang, C., Berry, C. M., & Lievens, F. (2021). Revisiting meta-analytic estimates of validity in personnel selection: Addressing systematic overcorrections for restriction of range. *American Psychological Association*, *107*(11), 2040-2068.

Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. American Psychological Association, 140(4),1174-1204.

Wallace, P., & Clariana, R. B. (2005). Test mode familiarity and performance: Gender and race comparisons of test scores among computer-literate students in advanced information systems courses. *Journal of Information Systems Education*, *16*(2), 177-182.

Thank You!

Please visit us at: www.nationaltestingnetwork.com